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The Voronoi diagram(1) of a set of 
points Pi divides space into ‘cells’, 
where each cell Ci contains the 
points in space closer to Pi than any 
other Pj.
The Delaunay triangulation is the 
dual of the Voronoi diagram: a 
graph in which an edge connects 
every Pi which share a common 
edge in the Voronoi diagram.

A Voronoi diagram (dotted lines) and its 
dual Delaunay triangulation (solid).(1) AKA “Voronoi tesselation”, “Dirichelet 

domain”, “Thiessen polygons”, “plesiohedra”, 
“fundamental areas”, “domain of action”…

Voronoi diagrams



Delaunay triangulation applet by Paul Chew ©1997—2007 
http://www.cs.cornell.edu/home/chew/Delaunay.html 

Voronoi diagrams
Given a set S={p1,p2,…,pn}, the formal 
definition of a Voronoi cell C(S,pi) is
   C(S,pi)={p є Rd | |p-pi|<|p-pj|, i≠j}
The pi are called the generating points 
of the diagram.

Where three or more boundary edges 
meet is a Voronoi point.  Each Voronoi 
point is at the center of a circle (or 
sphere, or hypersphere…) which passes 
through the associated generating points 
and which is guaranteed to be empty of 
all other generating points.

http://www.cs.cornell.edu/home/chew/Delaunay.html
http://www.cs.cornell.edu/home/chew/Delaunay.html
http://www.cs.cornell.edu/home/chew/Delaunay.html


Delaunay triangulations and equi-angularity
The equiangularity of any 
triangulation of a set of points 
S is a sorted list of the angles 
(α1… α3t) of the triangles.

● A triangulation is said to be 
equiangular if it possesses 
lexicographically largest 
equiangularity amongst all 
possible triangulations of S.

● The Delaunay triangulation 
is equiangular.

Image from Handbook of Computational Geometry
(2000) Jörg-Rüdiger Sack and Jorge Urrutia, p. 227



Delaunay triangulations and empty circles
Voronoi triangulations have 
the empty circle property: in 
any Voronoi triangulation of S, 
no point of S will lie inside the 
circle circumscribing any three 
points sharing a triangle in the 
Voronoi diagram.

Image from Handbook of Computational Geometry
(2000) Jörg-Rüdiger Sack and Jorge Urrutia, p. 227



Delaunay triangulations and convex hulls
The border of the Delaunay 
triangulation of a set of points is 
always convex.

● This is true in 2D, 3D, 4D…

The Delaunay triangulation of a set 
of points in Rn is the planar 
projection of a convex hull in Rn+1.

● Ex: from 2D (Pi={x,y}i), loft the 
points upwards, onto a parabola 
in 3D (P’i={x,y,x2+y2}i). The 
resulting polyhedral mesh will 
still be convex in 3D.



Voronoi diagrams and the medial axis
The medial axis of a surface is the set of all points 
within the surface equidistant to the two or more 
nearest points on the surface.

● This can be used to extract a skeleton of the 
surface, for (for example) path-planning 
solutions, surface deformation, and animation.

Shape Deformation using a Skeleton to Drive Simplex Transformations
IEEE Transaction on Visualization and Computer Graphics, Vol. 14, No. 3, May/June 
2008, Page 693-706
Han-Bing Yan, Shi-Min Hu, Ralph R Martin, and Yong-Liang Yang 

Approximating the Medial Axis from the Voronoi 
Diagram with a Convergence Guarantee
Tamal K. Dey, Wulue Zhao

A Voronoi-Based Hybrid Motion Planner for Rigid Bodies
M Foskey, M Garber, M Lin, DManocha       

http://cg.cs.tsinghua.edu.cn/papers/deform.pdf
http://cg.cs.tsinghua.edu.cn/papers/deform.pdf
http://www.cse.ohio-state.edu/~tamaldey/paper/medial.pdf
http://www.cse.ohio-state.edu/~tamaldey/paper/medial.pdf
http://www.cse.ohio-state.edu/~tamaldey/paper/medial.pdf
http://www.cse.ohio-state.edu/~tamaldey/paper/medial.pdf
http://www.cse.ohio-state.edu/~tamaldey/paper/medial.pdf
http://www.cs.unc.edu/~geom/voronoi/vplan
http://www.cs.unc.edu/~geom/voronoi/vplan


Finding the Voronoi diagram
There are four general classes of 
algorithm for computing the Delaunay 
triangulation:
● Divide-and-conquer
● Sweep plane

○ Fortune’s algorithm →
● Incremental insertion
● “Flipping”: repairing an existing 

triangulation until it becomes 
Delaunay

Fortune’s Algorithm for the plane-sweep construction of the 
Voronoi diagram (Steve Fortune, 1986.)

This triangulation fails the circumcircle definition; we flip the inner 
edge and it becomes Delaunay.

(Image from the wonderful people at Wikipedia.)



Voronoi cells in 3D

Silvan Oesterle, Michael Knauss 



Implicit surfaces 

Implicit surface modeling(2) is a 
way to produce very ‘organic’ or 
‘bulbous’ surfaces very quickly 
without subdivision or NURBS.
Uses of implicit surface modelling:

● Organic forms and nonlinear 
shapes

● Scientific modeling (electron 
orbitals, gravity shells in space, 
some medical imaging)

● Muscles and joints with skin
● Rapid prototyping
● CAD/CAM solid geometry

(2) AKA “metaball modeling”, “force 
functions”, “blobby modeling”…



How it works

Force = 2
1
0.5
0.25 ...

The user controls a set of control points, like 
NURBS; each point in space generates a field of 
force, which drops off as a function of distance from 
the point (like gravity weakening with distance.)
This 3D field of forces defines an implicit surface: the 
set of all the points in space where some mathematical 
function (in this case, the value of the force field) has 
a particular key value.



A few popular force field functions:
● “Blobby Molecules” – Jim Blinn

F(r) = a e-br2

● “Metaballs” – Jim Blinn
  a(1- 3r2 / b2) 0    ≤ r < b/3

F(r) =   (3a/2)(1-r/b)2 b/3 ≤ r < b
  0 b    ≤ r

● “Soft Objects” – Wyvill & Wyvill
F(r) = a(1 - 4r6/9b6 + 17r4/9b4 - 22r2 / 9b2)

Force functions



Comparison of force functions



Discovering the surface

An octree is a recursive subdivision of 
space which “homes in” on the surface, 
from larger to finer detail.  

● An octree encloses a cubical volume in space.  
You evaluate the force function F(v) at each 
vertex v of the cube. 

● As the octree subdivides and splits into smaller 
octrees, only the octrees which contain some of 
the surface are processed; empty octrees are 
discarded.



Polygonalizing the surface

To display a set of octrees, convert the octrees into polygons.
● If some corners are “hot” (above the force limit) and others are 

“cold” (below the force limit) then the implicit surface crosses the 
cube edges in between.

● The set of midpoints of adjacent crossed edges forms one or more 
rings, which can be triangulated.  The normal is known from the 
hot/cold direction on the edges.

To refine the polygonalization, subdivide recursively; discard any 
child whose vertices are all hot or all cold.



Polygonalizing the surface

Recursive subdivision (on a quadtree):



Polygonalizing the surface
There are fifteen possible 
configurations (up to symmetry) of 
hot/cold vertices in the cube. →

With rotations, that’s 256 cases.
Beware: there are ambiguous cases in 
the polygonalization which must be 
addressed separately.  ↓

Images courtesy of Diane 
Lingrand

http://www.polytech.unice.fr/~lingrand/MarchingCubes/algo.html
http://www.polytech.unice.fr/~lingrand/MarchingCubes/algo.html
http://www.polytech.unice.fr/~lingrand/MarchingCubes/algo.html


Polygonalizing the surface

One way to overcome the 
ambiguities that arise from the 
cube is to decompose the cube into 
tretrahedra.

● A common decomposition is into 
five tetrahedra. →

● Caveat: need to flip every other cube.  
(Why?)

● Can also split into six.
Another way is to do the 
subdivision itself on tetrahedra—
no cubes at all. Image from the Open Problem Garden

http://garden.irmacs.sfu.ca/?q=op/simplexity_of_the_cube


Smoothing the surface

Improved edge vertices
● The naïve implementation builds polygons whose 

vertices are the midpoints of the edges which lie 
between hot and cold vertices.

● The vertices of the implicit surface can be more 
closely approximated by points linearly interpolated 
along the edges of the cube by the weights of the 
relative values of the force function.

○ t = (0.5 - F(P1)) / (F(P2) - F(P1))
○ P = P1 + t (P2 - P1)



Implicit surfaces -- demo



Marching cubes
An alternative to octrees if you only want 
to compute the final stage is the marching 
cubes algorithm (Lorensen & Cline, 1985):

● Fire a ray from any point known to be inside 
the surface.

● Using Newton’s method or binary search, find 
where the ray crosses the surface. 

○ Newton: derivative estimated from discrete 
local sampling

○ There may be many crossings
● Drop a cube around the intersection point: it 

will have some vertices hot, some cold.
● While there exists a cube which has at least 

one hot vertex and at least one cold vertex on 
a side and no neighbor on that side, create a 
neighboring cube on that side.  Repeat.

Marching cubes is common in medical imaging such as MRI scans.
It was first demonstrated (and patented!) by researchers at GE in 1984,
modeling a human spine.



Voxels and volume rendering
A voxel (“volume pixel”) is a cube in space 
with a given color; like a 3D pixel.

● Voxels are often used for medical 
imaging, terrain, scanning and model 
reconstruction, and other very large 
datasets.

● Voxels usually contain color but could 
contain other data as well—flow rates (in 
medical imaging), density functions 
(analogous to implicit surface modeling), 
lighting data, surface normals, 3D texture 
coordinates, etc.

● Often the goal is to render the voxel data 
directly, not to polygonalize it.



Volume ray casting
If speed can be sacrificed for accuracy, 
render voxels with volume ray casting:

● Fire a ray through each pixel;
● Sample the voxel data along the ray, 

computing the weighted average (trilinear 
filter) of the contributions to the ray of 
each voxel it passes through or near;

● Compute surface gradient from of each 
voxel from local sampling; generate 
surface normals; compute lighting with 
the standard lighting equation;

● ‘Paint’ the ray from back to front, 
occluding more distant voxels with nearer 
voxels; this gives hidden-surface removal 
and easy support for transparency.

The steps of volume rendering; a volume ray-cast skull.
Images from wikipedia.



Sampling in voxel rendering

Why trilinear filtering?
● If we just show the color of the voxel we hit, 

we’ll see the exact edges of every cube.
● Instead, choose the weighted average between 

adjacent voxels.
○ Trilinear: averaging across X, Y, and Z

Your sample will fall somewhere 
between eight (in 3d) voxel centers.
Weight the color of the sample by the 
inverse of its distance from the center 
of each voxel.



Reasonably fast voxels
If speed is of the essence, cast your 
rays but stop at the first opaque 
voxel.

● Store precomputed lighting 
directly in the voxel

● Works for diffuse and ambient 
but not specular

● Popular technique for video 
games (e.g. Comanche →)

Another clever trick: store voxels 
in a sparse voxel octree.

● Watch for it in id’s next-
generation engine…

Sparse Voxel Octree Ray-Casting, Cyril Crassin

Comanche Gold, NovaLogic Inc (1998)



Ludicrously fast voxels
If speed is essential (like if, say, you’re 
writing a video game in 1992) and you 
know that your terrain can be 
represented as a height-map (ie., without 
overhangs), replace ray-casting with 
‘column’-casting and use a “Y-buffer”:

● Draw from front to back, drawing 
columns of pixels from the bottom of 
the screen up.  For each pixel in 
receding order, track the current max y 
height painted and only draw new pixels 
above that y.  Anything shorter must be 
behind something that’s nearer, and it’s 
shorter; so don’t draw it.

Depth

D e p
 t h



Optimizing first contact in hardware

To accelerate first raycast, don’t 
raycast: use existing hardware.

● Use hardware rendering (eg 
OpenGL) to write to an offscreen 
32-bit buffer.

● Set the color of each primitive equal 
to a pointer to that primitive.

● Render your scene in gl with z-
buffering and no lighting.

● The ‘color’ value at each pixel in 
the buffer is now a pointer to the 
primitive under that pixel.



Particle systems
Particle systems are a monte-carlo style 
technique which uses thousands (or 
millions) or tiny graphical artefacts to 
create large-scale visual effects.

Particle systems are used for hair, fire, 
smoke, water, clouds, explosions, 
energy glows, in-game special effects 
and much more.

The basic idea:
“If lots of little dots all do something 
the same way, our brains will see the 
thing they do and not the dots doing it.”

A particle system 
created with 3dengfx, 
from wikipedia.

Screenshot from the 
game Command and 
Conquer 3 (2007) by 
Electronic Arts; the 
“lasers” are particle 
effects.

http://en.wikipedia.org/wiki/Particle_system


History of particle systems

1962: Ships explode into 
pixel clouds in 
“Spacewar!”, the 2nd 
video game ever.
1978: Ships explode into 
broken lines in 
“Asteroid”.
1982: The Genesis Effect 
in “Star Trek II: The 
Wrath of Khan”.

Fanboy note: OMG.  You can play the original Spacewar!
at http://spacewar.oversigma.com/ -- the actual original 
game,
running in a PDP-1 emulator inside a Java applet.

http://spacewar.oversigma.com/


“The Genesis Effect” – William Reeves
Star Trek II: The Wrath of Khan (1982)

http://www.youtube.com/watch?v=NM1r37zIBOQ


Particle systems

How it works:
● Particles are generated from an emitter.

○ Emitter position and orientation are specified discretely;
○ Emitter rate, direction, flow, etc are often specified as a bounded 

random range (monte carlo)
● Time ticks; at each tick, particles move.

○ New particles are generated; expired particles are deleted
○ Forces (gravity, wind, etc) accelerate each particle
○ Acceleration changes velocity
○ Velocity changes position

● Particles are rendered.



Particle systems — emission

Each frame, your emitter will generate 
new particles.
Here you have two choices: 

● Constrain the average number of particles 
generated per frame:

○ # new particles = average # particles per frame + 
rand() * variance

● Constrain the average number of particles per 
screen area:

○ # new particles = average # particles per area + 
rand() * variance * screen area

Transient vs persistent particles
emitted to create a ‘hair’ effect
(source: Wikipedia)



Particle systems — integration

Each new particle will have at 
least the following attributes:

● initial position
● initial velocity (speed and 

direction)

You now have a choice of 
integration technique:

● Evaluate the particles at 
arbitrary time t as a closed-
form equation for a stateless 
system.

● Or, use iterative (numerical) 
integration:

○ Euler integration
○ Verlet integration
○ Runge-Kutta integration



Particle systems — two integration shortcuts:

Closed-form function:
● Represent every particle as a 

parametric equation; store only 
the initial position p0, initial 
velocity v0, and some fixed 
acceleration (such as gravity g.)

● p(t)=p0+v0t+½gt2

No storage of state
● Very limited possibility of 

interaction
● Best for water, projectiles, 

etc—non-responsive particles.

Discrete integration:
● Remember your physics—

integrate acceleration to get 
velocity:

○ v’=v + a •∆t
● Integrate velocity to get 

position:
○ p’=p + v •∆t

● Collapse the two, integrate 
acceleration to position:

○ p’’=2p’-p + a •∆t2

Timestep must be nigh-
constant; collisions are hard.



Particle systems—rendering
Can render particles as points, textured polys, or 
primitive geometry

● Minimize the data sent down the pipe!
● Polygons with alpha-blended images make 

pretty good fire, smoke, etc
Transitioning one particle type to another 
creates realistic interactive effects

● Ex: a ‘rain’ particle becomes an emitter for 
‘splash’ particles on impact

Particles can be the force sources for a 
blobby model implicit surface

● This is sometimes an effective way to 
simulate liquids

nvidia

Hagit Schechter
http://www.cs.ubc.
ca/~hagitsch/Research/
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